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I.  INTRODUCTION

The MILES system was designed and built as a tactical laser weapcn
fire simulator (LWFS). All of the mathematical analysis and experiments
performed during the Advanced Development (AD) phase were to show that
MILES would accurately simulate tactical weapen fire. The use of MILES
for long range marksmanship gunnery training will require the kill zone
of the MILES transmitter t~n he very narrow and well defined. It is the
purpose of this study to construct mathematical models for long range
laser propagation which will permit evalnation of the MIIES equipment
for marksmanship gunnery training. The study also includes an accurate
analysis of the Binary Union decoder used in the MILES receiver. The
Binary Union decoder was designed to increase the detection probabiiity
of received MILES words under very specific fading conditions. The
currently available analysis makes several assumption: that are compa:ible
with the short range problem, but for long ranges ¢ mcre accurate analysis
is required, for if the short range (200 meters) anil.sis were to be ex-

tended to the longer ranges an overly optimistic ,ystem performance results.

A. Background:

Iv. has long bren recognized that an opt.cal beam propagating only
several meters through clear-air turbulencc will result in a redistri-
bution of its energy, leading to fluctuations in the beam intensity
commonly referred to as "scintillations". The statistics associated
with these scintillations have been the subject of many theoretical
and experimental investigations [1}] - [12]. Much of the theoretical
work dealt with approximation schemes for the solution of the wave

equation describing the propagation of an optical beam through a
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turbulent atmosphere. While these approximations have led to several

different theoretical descriptions tor the intensity fluctuations, the

lognormal model has been more commonly accepted than the others. For
propagation paths up to around 200 meters (or under conditions of weak
turbulence) the logarithm of the intensity of the distorted wave is
assumed to be normally distributed; hence the intensity itself is said

to have a lognormal distribution. A large sumber of measurements have

been made over the years which tend to support the lognormal model in
the weak turbulence regime [9] - [12].

For distances beyond 200 metcres (or under conditions of strong
turbulence) the probability density function (pdf) associated with the
optical scintillations is still 2 matter of great controversy. Several
different models have been proposed for this saturation regime where
multiple scattering effects are prominent. These models range from
perturbed forms of the lognormal distribution 113], [14], to the K-
distribution [6], [9]. Although the K-distribution provides reasonably
accurate predictions for the statistical moments in part ol the satur-
ation regime, it is not theoretically applicable in areas of weak
scattering where the mean-square fluctuation <12>/<I>2 falls below 2

A new mathematical model is proposed here which we believe is
applicable for all propagation path lengths and conditions of turbulence.
The model takes into account both the specular component of the optiral
beam and the diffuse component(s) which begin to be prominent when
multiple scattering effects are important. We believe the reason the
lognormal model fails to accurately describe the phenomenon in the
saturation regime is that it ignores the diffuse component(s) of the

beam. Owing to the presence of both of these components of the beam,




B ke

the proposed model has characteristics of the lognormal distribution
over short propagation paths whi-e approaching the negative exponential
distribution as the propagation ;ath tends to infinity. Recent measure-

ments made by Parry and Pusey (9], as well as our own measurements over

propagation paths from 200 - 3000 meters, tend to support this new

mathematical model.




II. ATMOSPHERIC MODEL

Cptical communication systems operating in a clear-air atmosphere
are subject to many variations in atmuspheric conditions. To¢ study such
systems in genecal would require a very coiplex model of the atmosphere.
Frequently it is the case¢ that the particular phenomenon of interest of
the optical system may be the result of only certain atmospheric varia-

tions and other atmospheric conditions can be reasonably ignored. This

appears to be the case in stvdying the intensity scintillations associated

with an optical beam traversing a clear-air atmosphere.

A. The Refractive-Indax Structure Parameter:

One of the most significanu parameters of the atmosphere for optical
propagation is the index of refraction. At a point r in space and

time t the index of refraction can he mathematically expressed by
n(r,t) = n, + nl(g,t), (2.1,

where r, = <n(r,t)> 1s the average value over some continuously monitores

time period and n, represcuts the random deviation of n from its average

value.

Fur optical frequency signals the refractive-index fluctuations are

caused almost exclusively by atmospneric temperature variations. These

atmospheric temperature fluctuations originate primarily from the heating

of the earth's surface, but then these variations are further broken and
mixed by the wind which gives rise to a continuum of different scale
s1zes. This leads tc the refracture-index being proportional to the

temperature fluctuations
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Since the time period associated with transmitting a laser beam
is of t 2 order of a few minutes or less, we will he interested in
refiactive~index fluctuations over similar time periods. Thuc we can
assume the "frozen-in" turbulence model wherein the index fluctuat. .ns
<t a point are generated by different sized "blobs", or turbulent eddies,

swept past the point by the mean wind. With this model we need consider

only tihe spatial structure of the turbulence so that (2.1) can be

rewritten as

n(r) = n, + nl(g). (2.2)

The turbulent eddies have a lens-like effect on an optical beam

propagating through the atmosphere [4]. These eddies vary in size from
£ , a scale of only a few millimeters and called the inner scale of
turbulence, to an outer scale denoted by Lo' When the propagating beam
is near the ground the dimension of Lo is voughly comparable with the
beam height above the ground. These ditferent sized eddies are respon-
sible for both diffractive and refractive effects on the optical beam,
which results in both constructive and desiructive interference of the
beam. It 1s the interplay of refractive-optical phase shift and
diffractive-optical ray bending of the light rays that account isr the

observed amplitude fluctuations, and hence, intensity fluctuations.

Assuming spatial stationarity and homogeneity of the atmosphere,

we define tue autocovariance function and spatial power spectrum of the

refractive-index fluctuations by |[2]
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Bn(r) = <n1(r1)n1(r1 +r)>

1
- 4 / ¢n(k)k sin(kr) dk (2.3
r o
and
o
¢ (k) = 12 /B (r)r sin(kr) dr, (2.4
n 2%k o n

which are three-dimensional Fuarier transforms of each other. Because of

radial symmetry, the integrals reduce to a single integral in terms of the

radial variable r and spatial wave number k.

Tartarski [1] suggested that the powe: spectrum had the same form as

the wind velocity spectrum, viz.,

- .2 ,-11/3 w22
¢n(k) = 0.033 Ln k exp(-k“/k m)’ (2.5)

where Ym = 5.92/20. The refractive-index structure parameter Cé is a
measure of the intensity of the refractive-index fluctuations (i.e., a
measure of the intensity of the turbulence). Although it is often

referred to as the structure "constant", 1t ty ically ranges in values
y p y g
(o]

from 10-17 or less, for conditions of weak turbulence, up to 10 r

more when the turbulence is strong. Over short time intervals at a fixed
distance, for a constant height of the propagation path above the ground,

1t is reasonable teo assume Cg 15 essentially constant.

L = e nmwn i — Aram—t:
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Eq. (2.5) is accepted as valid only for small scales such that

k> km' For large scales such that k < ko, where k° = Zn/Lo, the approx-
imation is poor. A better approximation for ¢n(k) in this latter case

is given by [7)

o (k) = 0.033 ¢2 (2 + /L) 16 exp(-k¥/x ), (2.6}
n n ) m
callea the modified von Karman spectrum.
7
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III. OPTICAL INTENSITY FLUCTUATIONS

In this section we describe several of the parameters of interest

in optical scintillations such as log-amplitude, log-intensity, norm-

alized variance, and log-intensity variance. Connecting relations

between these terms and the lognormal model are discussed so as to
present a backgrovnd for the math model developed in Section V.
In the absence of turbulence the field of an optical beam can be

expressed mathematically by
U () = A et (3.1)

where Ao is the (constant) amplitude of the field, w is the angular
frequency of the wave, and i = /=1. The incident intensity of the

undisturbed field is then
1= u ()%= & (3.2)
o} o o’ o

After propagating a certain distance into a turbulent medium the fielc
becomes

UCt) = AelWE,i® (3.3)

where A and ¢ represent the distorted amplitude and phase, respectively,
induced by the medium.

It is customary to define the log-amplitude of the field by

X = 10g(A/A0) (3.4)

4
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so that A = Aoex. Hence, (3.3) can also be written

U(t) = A eX ei(wt +9). (3.5)
~ o

The intensity of the field is now given by

1= |uee)]? = aleX (3.6)
and we define the log-intensity of the field by
log(1/1,) = 21, (3.7)

which equals twice the log-amplitude of the field.
For both plane-waves and spherical-waves the average intensity at

a point can be taken as its value in the absence of turbulence, i.e.,

<I> =1, (3.8
[o]

Under this assumption it foliows from (3.6) that

2% (3.9}

The usual measure of the strength of the intensity fluctuations is the

normalized variance defined by

P IR LAl G (3.10)
(I>2 <I>2




In terms of the log-amplitude X, this reads

0% = <e¥%> - 1. (3.11)

A, Probability Distribution of Log-Intensity:

Many theoretical investigations have concentrated on the random
fluctuations in the log-intensity or log-irradiance. Under conditions of
weak turbulence the log~intensity appears to satisfy a normal probability

distribution, and hence the intensity itself is said to satisfy lognormal

statistics. To theoretically see why this is so, we consider the following
3 mathematical model.

Let us suppose the turbulent medium to be composed of a large number of
independent slabs, oriented perpendicular to the direction of propagation of
an optical beam, and such that the thickness of each slab is large compared

with the outer scale of turbulence (see Fig. 3-1). Over short distances the

scattering cone is narrow so most of the energy of the beam remains directed

along the axis of propagation. Off-axis scattering terms are neglected.

INDEPENDENT SLABS

INCIDENT

WAVE B RECEIVER

Fig. 1-1. Multiple scattering model with weak scattering
within =ach layer.

e

10

‘1 1] ag e A dowe s oo . ! '




e T T

The amplitude value of the wave is initially Ao. After passing

through the first slab the amplitude is

A1 = Ao - mle = Ao(l -~ ml),

where m is a "small" random proportionate. At the second slab the

amplitude becomes
A2 = Al(l - mz) = Ao(l - ml)(l - m2)

whereas in general after n slabs, we have

n
An = Aojgl(l - mj), (3.12)

where the mj's are assumed independent of each other. Taking the natural

logarithm of (3.12) teads to

[+ 4]
Ln A = LnA_ +j§l'f,n(1 - ), (3.13)

and if n is sufficiently large (n » ®) we can invoge the Central Limit

Theorem to declare that lim Ln An = A is normally distributed.
bemand

Since we have defined

X = Ln(A/A)) = % Ia(1/1 ), (3.14)

11

.~ .«,..«.-n-g
e |




PR Dy

S ISR
75_8« T R T TR TR TR AN

P

it follows that X is normally distributed with mean

<> = %(Ln(l/lo)>

and variance

The pdf for X is therefore

2 2
-(x - <>
p() = —A—exp{-(x - <x>) /20 1,
J2n o
{ X
and by putting 2x = Ln(I/Io). wve get
1 exp{-(Ln(1/1 ) - 2<x>]%80 21
p(I) = ———toe 0 X -
2 J2n o 1
J2r o,

as the distribution for I. If we further introduce

2 = 2y 2
of .= <(Ln(l/1 )7 - <la(1/1)>%,

called the log-intensity variance, ve find

2 - 2, 2 2
ULnI 4<x™> 4<y> on .

12

(3.15)

(3.1¢)

(3.17)

(3.18)

(3.19)

dad
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% Fig. 3-2. Normalized lognormal distribution for various values of o
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That is, the log-intensity variance is four times the log-amplitude
variance, Using (3.19), we now write (3.18) in the more familiar form

of the logrormal distribution,

1"1 2 2
p(I) = — exp{-(Ln I - V" /20 Lnt} , (3.20)

where v=Ln I0 +2<x> = <Ln I> (see Fig. 3-2).

B. The Short Range Approximation:

If X is normally distributed, then

<82x) = exp(2<y> + 20)2<)

and since <e?*> = 1 (Eq. (3.9)), it follows thk <x> = -0,

Therefore the normalized variance (3.11) leads to
2 _
0" = <exp(4y)> -1
_ 2
= exp(4<y> + 80x )
from which we deduce

2 _ 2
o = explha - 1. (3.21)

In view of (3.19), we also note that

2 2
0" = E'Xp(OLnI ) - 1. (3.22)

14
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The spherical wave theory [1], [5] predicts that the log-amplitude

variance is proportional to the index of refraction structure parameter

c2 accordins, to
n

oi = 0.124 cﬁ k16 1176 L>>R§/A; (3.23)

hence it follows that

' 2 2.7/6 (11/6
§ op .y = 0.496 C_ k7 L/P (3.24)

which is accepted valid for ail ranges. However, if we restrict the

log-intensity variance such that 0Ln1<<1’ then

2

2
exp(o LﬂI) = 1 + OLnI

and thus (3.22) leads to the well-known approximation

2

o’ o . =0.496 ¢ 7/6 L1V/E, (3.25)
nl n

That is, under conditions of weak turbulence the variance of the intensity

and the variance of the log-intensity are approximately equal. This

same relation is no longer valid under conditions of strong turbulence
where experimental evidence supports the point of view that 02 reaches a

maximum value in the saturation regime and then decreases steadily

toward a value of unity in the limit.
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IV. EXPERIMENTAL MEASUREMENTS

Recently collected data tend to support once again the lognormal
mode]l for intensity fluctuations over short ranges or conditions of weak
turbulence, whereas data recorded under conditions of strong turbulence
(including distances up to 3000 meters) illustrate that the mean-square

2 can be as high as 6. Neither the lognormal modgel

fluctuations <12>/<I>
nor the newly developed K-distribution {6j, [2] are satisfactory for
describing the observed phenomenon very well over all ranges of the

mean-square fluctuations.

A. Experiment:

The propagation experiments which were conducted to verify the
mathematical modelling were carried out at Kennedy Space Center's Space
Shuttle Landing Facility. The Shuttle Landing Facility consists of a
concrete runway 16,000 feet long (4.9 kilometers) and 300 feet wide.

The area around the runway was cleared of all obstacles and vegetation
for approximately a 1000 foot radius. The runway had weather monitoring
stations at both ends and midway down the ruuway. Also, satellite
weather pictures were received every 15 minutes of the Shuttle Landing,
Facility area along with the entire east central Florida area. This
allowed the research team to plan and carry out the experiments under
well documented conditions.

The experiments were conducted from March 17 to March 28, 1980.
Tests were performed in the afternoon and at night. The daytime temper-
atures averaged 75 - 0° F while the nighttime temperatures averaged
66 - 68° F. The humidity remained low both during the daytime and
nighttime experiments. The sky remained partially cloudy during the
entire set of experimeuts but the winds varied considerably. During

16
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the day, wind speeds ranged from 0 - 12 mph (0 - 5.36 m/s). while at

night the wind was virtually still. Wind direction was usually parallel

to the direction of propagation and less than half the time perpendicu-
lar to the propagation path.
The optical beam was generated by a Spectra Physics Model 120 HeNe

laser with a wavelength of 632.8 nanometers and an inherent beam diver-

The laser power was 15 milliwatts with

The

gence of about 1 milliradian.

an intensity fluctuation of less than 1% over a period of an hour.

optical beam was used directly from the laser without optics. A tripod

was used te rigidly mount the laser transmitter at 1.4 meters above the

runway surface. The runway was extremely flat which allcowed the beam

to remain at a constant height above the surfzce for ranges up to about

1000 meters. At ranges beyond 1000 meters the earth's natural curvature

brought the beam to within % meter of the runway surface at somr inter-

mediate point of the path.
Two receiving stations were used to monitor the statistical

fluctuation of the beam intensity. One station was located at a fixed

distance of 183 meters from the transmitter while the second station

was placed at several dfferent distances down range from both the

transmitter and the first station. The short range station was .sed

to measure the first and second statistical moments of the fluctuating

laser beam. Extensive testing at this short range station confirmed

tuat the statistics were indeed lognormal at this range.
The short range station consisted of a solid state PIN diode
detector, a high gain transimpedance amplifier, filter (set at 2000 Hz),

amplifier, and a special circuit designed to compute the normalized

second moment of the fluctuating signul. The aperature of the detector

17
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Fig. 4-6. Lookiag towards laser transmitter from 3000 meters down range.
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g‘; was % millimeter and the detector was shielded from background light.

}?z gz Periodic checking of the background light and adjustment of the sﬁield
?’\i\ . maintained a high signal-to-background ratio. A system diagram of the

; g: short range station is shown in Fig. 4-1.

g 3' At the long range station a photomultiplier detector was employed

§ - in conjunction with a2ppropriate amplifiers and. a Digital Equipment

i_ ﬁ; Corporation MINC-11 computer which digitized the signal and .calculated
EQ - the statistical moments (see Fig. 4-2). The aperature of the detector
i% o was set at 50pm so that the detector would function as a point detector.

! 3 A high gain transimpedance amplifier followed 'the photomultiplier tube
H

(PMT), the output of which was filtered to reduce the shot noise generated

T

by the signal in the PMT. The signal was then amplified prior to the A/D

converter. The A/D converter could accept signals bewteen +5 volts and

HY -5 volts. The quantization level of the A/D converter was 2.5 milli-
E“ volts. So as to obtain the lowest -quantization noise level possible,

the signal was kept at the highest possible level (without clipping).

The sample rate by the computer of the analog signal was varied

=i

between 100 and 4000 samples per second. Occasionally the background

Emd

light was checked by turning off the laser and then having the computer

sample the background light alone. The photographs in Figures 4~3

[ ]

o A e e e e § A

through 4-7 show the actual experimental equipment used during the test.

s I
b--aresnanr-4
-

B. Results:

 —]
oY

The analysis of the fluctuating optical signal was performed by

computing the first five statistical moments of the mecasured signal.

prs s
et

The computer was programmed to calculate and display the moments as

data was being taken. Normalized moments were calculated by dividing

the nth moment <In><by the average value <I> raised to the gth power,
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inherent statistics of the scattering process independent of the power

S .

. e b 5

i.e., <In>/<I>n. This normalization process allows one to discern the

of the laser beam and allows for a comparison of the statistics at
different ranges. The moments give information about the shape of the
probability density function. Comparisons of the cumulative probability
curves can be deceiving in that different cumulative curves may appear
to be very similar but yet the distributions from which they came may
differ greatly out in the "wings" of the distribiition. It is these ;
"wings" that are of most importance in long range propagation, and {
since the moments high-light the differences between the "wings" of :
various distributions, we have chosen them-as a means of discriminating | '

between distributions rather than relying on cumulative: probability

‘curves.

TN N Y

Fig. 4-8 shows a plot of the measured normalized moments <In>/<I>n

for n = 3,4,5 as a function of the normalized second moment <12>/<I>2.

Aww‘i&g«

It is interesting to note that the normalized second moment takes on

values as high as 5 and 6. However, these high values .seem to be i
consistent with other recently measured data [9]. For a fixed value é
of <12>/<I>2 the data in the figure gives the appearance of being é
widely scattered. Actually this is due to the fact that the moments %
steadily increase until they reach a maximum value 2rid then begin to ;
slowly decrease. As they decrease the moments assume values lower g
than corresponding values attained during the time of increase for a ?

fixed value of <12>/<I>2.

Fig. ‘4-8 also shows graphs of the lognormal and K-distributions
having the same first and second moments as the data. For small values

of <12>/<I>2 the data does indeed substantiate the lognormal model and
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the K-distribution appears to fit the data reasonably well for larger
values of the normalized second moment. However, neither distribution
provides the looping effect preéviously mentioned where the moments
reach 2 ‘maximum value and then decrease along different curves.

Data gathered during the nighttime hours at a distance of 3000

meters is shown in Fig. 4-9. The wind velocity was virtually zero.

The wide scattering of the data is attributed to the fact that the

weather conditions led to a state of nonstationary statistics,
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V. A NEW THEORETICAL MODEL FOR INTENSITY FLUCTUATIONS

Limitations of the lognormal model for describing random intensity
‘fluctuations have been widely recognized in the literature. Even the
newly developed K-distribution is limited to only certain conditions-of
turbulence. Therefore it seems highly desirable to develop a universal
model which has characteristics of the: lognormal model under conditions
of weak turbulence (O%nl<<l) and characteristics of theé K-distribution
for conditions of strong turbulence (0§n1>>1)’

Tke lognormal model emerged under the hypothesis that virtually all

‘of the energy of the optical beam is directed along the axis of propa-

. Taream v

i gy pwe S Bee pam B mm B

gation and ignores the multiple scattering effects of the off-axis -eddies.

Under conditions of strong turbulence the contributions from the off-axis

—s‘ “’

B e e ieane - T

are more significant than the line-of sight contvibution so that ignoring

hr o ————

Tt}

these scattering effects can no longer be valid.

Following along similar linés as in deWolf's [4] physical model, we ;

w.
s

N believe it is reasonable to argue about the existence of two principal
components which contribute to the field received at a point downraige
from the transmitter. One of these components, called the specular
component, results from the forward scattering by the large eddies along

the propagation axis as described in the lognormal model in Section III-A.

The second component which we refer to as the diffuse component(s) arrives

at the point recéiver after multiple scattering by the off-axis eddies

(see Fig. 5-1). Thus the received field is described mathematically

by

28

. tal .

g " g3
—— e
-
o AR du
Jowe FLINEE Ly
Fr




R O e

UCt) = (Ael® + Re
A Ve A V4

component, component

;';s;;
4
E
i
4
A
1
¥

Similar models have previously been suggested also by Jao and Elbaum [8)

and Fante [15].
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Fig. 5-1. Multiple scattering model.

Based upon physical considerations it can be argued that the

amplitude A of the specular component essentially satisfies the log-

normal probability distribution and that the phase angle 0 is uniformly

distributed,

These assumptions are consistent with deWolf's model.

However, deWolf assumes that the amplitude R of the diffuse component(s)




obeys a Rayleigh distribution. Surely this must be the case in the

limit where essentially all of the energy of the beam is contained within.

Gai s g L2
3
3

the diffuse component(s) and the number of terms contributing to this
component is large. In intermediate regimes we believe the diffuse

component is the result of adding a small number of terms so :that the

i »
Tnataing

- A -

‘Rayleigh assumption is not justified. Therefore we choose to make the

Bemd

assumption that R satisfies a generalized Rayleigh distribution which

b

includes the Rayleigh distribution, among others, as a special case.

As for the specular component, the phase angle ¢ is assumed uniformly

Worpmcuner§
A

1]

distributed.

lw.ﬂms
3

The generalized Rayleigh distribution, also called the m~distri-

LFa

S WAt b b b ot < it s .

2

bution, was first introduced by Nakagami [16] in connéction with his

L ]

studies of intensity distributions for rapid fading in long distance §

— I S—

propagation. Much of his work was done during the 1940's and ‘published

T PO N 30T A

in Japanese journals. which may account for the fact that some of his f

p o
L1

T
4

i work has gone on virtually unnoticed. The m-distribution seems appro-

. 2
H) x

priate here also in connection with our problem because of the close

smilarities of the phenomena and because it leads to theé Rayleigh

P TR

3

distribution as a limiting case.

-il »vl
At e i

A. Development of the PDF:

Assuming the received field within a region of turbulence is given b

by (5.1), the intensity of the field is found to be

2

1=|U(t)]% =42+ R + 28R cos(¢ - O). (5.2)

Sl

Although there are several approaches that could be used for calculating

the pdf for I, we do so by utilizing the Hankel trensform (see Appendix A)
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e {5.3) \,
p(1) = % [zC(z)Jd(vrf z)dz

senedary

¢ where

o o

I e = [rma aar [ p@3 Re)ar (5.4)

: ° ° () ° .

3l I is a characteristic function. The function Jo(.) is the Bessel function (
of the first kind of order zero ({17}, pp. 355~434) and p(A) and p(R)

s ¢y Wt Do s e

| : , ,
i e denote the pdfs associated with the amplitudes A and R, respectively.

g ";’ Under the assumption that R satisfies the m-distribution, we have ;
-

{16] (see Fig. 5-2).

2m R e-mR /b’ (5.5) 3

T'(m) b

IR A Caie e 2 2,

T I e e
iy driane 2 oo oo A s inbons

P(R) =

EA‘A *

3

where b = <R2> is the average of the intensity R2 and T'(.) is the gamma

v

o e,
o
2

function (see [17], pp. 253-294). Observe that for m = 1, (5.5) reduces

P

to the well-known Rayleigh distribution. Thus we find

ity ;&m*ﬂ* e A om0

o - 4 2
/ p(R)I (Rz)dR = / ml g RS 5 (Re)dr
o’ F(m)b °
2 S,
= Fl(m;l;-bz /4m) , (5.6) “
where we have used the formula ([18], p. 716)
> 2 +1
p_—ox . "—} —) B viu+l VL 3= 8 , g
[x e J fBx)dx pyves Tv+u+17/2 T D F1GG— ) G
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Fig. 5-2, The normalized m-distribution,
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Here 1Fl(a;b;c) is the confluent ‘hypergeometric function ([17], pp. §
503-536). 1If A is assumed to be lognorial, thé first integral in (5.4) ;
cannot be evaluated in closed form. We therefore resort to the power “f
series expansion ?
8

- ] i ;

REES> ¥y (5.8)

k0 (k1)? :

so that

» © , k ,.,.2%k £ |

° =0 (k!) ° i

o 3

o R ena®s (5.9) 4

k=0 k)2 3

where <A2k> denotes the kth moment of Az; Now (5.3) becomes

o _“
p(I) = !:Z _(-_1_2.13;431‘2_ j 22k+11F1(m;1;-bz?'/4m)J(;(/I_ z)dz, (5.10)
k=0 22k (kg)2 o

or owing to the integral formula ([18], p. 873)

3 20 21 (4
2 2 27 1) g2l L b 5.11
X F (a;b'-Ax )J (xy)dz - 23 A +1 - ’ ( . )
[ 11 ’ v Ir'(a) y2°+1 4 2'2— +p, a, -—-12\’ +p
(5.10) reduces to
k 2k -(k+1)
-1)" < A 1 21 { mI 1, 1
pny =Y < G (—— ) (5.12)
& "D rem 23\ b |kHl, m, kHl

Lol




R e N

SR 1 Tﬂfmwm;w
R
T 2

4 f which we shall henceforth. refer to as the G-distribution or universal v%
] ! ; ' i
¢ 1 model. The function G:z (.) is a generalized function known. as the
3 - Meijer G-function ([19], p. 206). k
p - Although (5.12) 1s a representation for the pdf associated with !
I intensity fluctuations, it does not lend itself in its present form to ‘
?” . eagy computations because of the complexity of .the G-function. In i
3 T >0
g Ji Appendix B we relate this particular G-function to the associated o
fﬁ - Laguerre functions, but even so the resulting expression is still quite é
E | { J
f{ " w complex, Further refinement of this pdf is called for in order to make 3
_§ ™ it more tractable. ?
S
.
| |
k. . e B. Theoretical Moments: %
?» - For purposes of comparing a probabilistic theoretical model with g
b i 2 "
f*? ™ experimental data we believe a comparison of the predicted (normalized) ;
‘ﬁ % ]: moments with the actual (normalized) moments provides. a better criterion 3

for validating the model than does a comparison of the distributions

Bend
2

themselves or their cumulative probabilities., With few exceptions,

the moments uniquely determine the distribution.

E.’w

While the pdf (5.12) does not readily lend itself to direct com-

putations for the pdf or the cumulative probability, it does lead to a

AP o

closed form expression for the moments, ‘fnhus if vie use the integral

fom“la ([‘18]’ pl 897)'

,f.),\ m n %

E"i‘ l [ ] 81,...,8 “ I' (bj + p) ll I‘ (1 - 8j - p) "

; o-1 mn P i=1 =1 «P, (5.13) 3
N\ G axfy b Jdx = q , ~5 #

fn o Pq 1"'0’q .n’r-(l_bj..p) i I’(a}-f-p) ;

i ll Il j=n+1

3' we find
y ]
- 34
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<1 = /In p(I)dT

.3 (-1)“<A2“> [ (k-1 21(
k0 k¥ T@ o AN

k

1, 1
)u
k+l, m, k+l

n
.5 gQ<f% cr« n! Tm+n-% F(k-n),

k=0’ (k!) T'(m) (n - k)! T'(-n)

(5.14)

where the series is now finite. That is, all terms such that'k > n + 1

reduce ‘to zero because of the: factorial (n - k)! in the denominator.

Also,

.y k
Tk =-n) _ (_‘l)k n(n =1)...(n - k +1) = (17 nl

I'(-n) (n - k)!

and thus (5.14) is equivalent to

n

<% Z (n)Z bn-kI‘ (m+n -k) <A2k> ’
= k n~k
k=0 m  T(m)

where

el
k ki(n - k)!

(5.15)

In order to make comparisons of the moments of various distri-

butions they should be normalized so that the mean value is unity.

To do so, we first set n = 1 in (5.15) to get

<I> = b + <A2> =b(l + 1)

(5.16)
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where r = <A™>/b = <A"™>/<R™> is the power ratio of mean intensities of
the specular to diffuse components. It is also convenient to introduce
;the normalized moments [16], [20]
1 L LR Mt k) (5.17)
i .
2L
el and
1 I
g o 2k k(k-1)/2 ) ‘
2l 3 = <A2 e A ’ (5.18):
g i <A™>
gL
F b, .22
2 j i where A = <A">/<A™>", Hence we now write
i -
g, ! . n 2 k
i ; <1 = p" Y, (“) in-k %%k ¥
SRR k=0 \K
Ml )
§; f so upon division by <I> , we finally obtain,
e ;
- (I") ' 1 n n\2 rk
L = = — Z(k) Ynek % T (5.19)
<{1> (1 +1r) k=0
.
It might be of interest to note here that limiting forms of (5.19)
- lead to normalized moments of either the lognormal distribution (r + =)
" ? or the negative exponential distribution (r -+ 0), i.e.,
¥ 1. »
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sy gy |
o 2
]

I <% t_{xh(n-l)/Z as r > @
i <" n! as r ~+ 0,

»

o o

in agreement with previous theories. (As r + 0, we also have m + 1 in

(5.17) to get this result.)

““:1(5

C. Comparison of Moments with Data:

The normalized moments (5.19) depend upon three parameters:

B

(a). the reciprocal of the normalized variance of the

§~'\o

m-distribution denoted by m,

(b). the normalized second moment A of the lognormal

1

distribution, and

(c). the power ratio r of mean intensities -of the specular

to diffuse components.

- ww;wv:r
e e it
~ -
-3 % E nl

The three parameters m, A, r are chosen in such a way that the first two

normalized moments of I match the data identically and the third moment

L~
o
Sed

R PN

e
ool

] ’., g is matched by some "best fit" criterion.
e 3 .
PA f ¢ l Since only the first five normalized moments were actually measured
A
1 ‘ l in the field, we separately list the corresponding theoretical moments$
! g as determined by (5.19),
o l '
2., (5.20a)
i} <>
§ é
; 2 B, + 4r + a r2 ‘ ‘ 3
1> 12 2, (5.200) >
: <15 A+l
Ll
i <3> u+9ur+9ar2—+ar3
; <> (1+ r)3 ;
b i
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A Faide sl oo - ;ﬁ‘ ;m
|
1
4 4, + 164,r + 368,50 + 16a,r° + ac” |
: <pt o Ha T OUST T PlgRpt T AT T AL, (5.20d) |
~” (I)l’ (1 + r)l‘ o{'
£~ de + 254, + 100p.,a r2 + 100u,a r3 + 25a r4 + a r5

3 <15> - 5 4 372 273 4 5 .(5.20e)
4 <1>° 1+1)°
;! 3 ! Here we note that uo- a1 =1, i
SERNE :
R -

L a = AEDZ s

1 k

i % v

DS
b ?
E! i and
¢ ¥
E; 7 { i uk+1 = (1+ k/m)\-lk’ k =1,2,3,4,
b L
i
B ! this last result being derived from (5.17).
ff The measured normalized moments <I">/<I>" for n = 3,4,5 as a function
r
ii ; -of. the normalized second moment <12>/<I«,>2 are shown in Fig, 5-3 along
s
ff ; with theoretical curves predicted by the present G-distribution (Eq.

i} : (5.20a) ~ (5.20e)). 1In Fig, 4-8 the samé data was displayed along with

y | ; theoretical curves predicted by the lognormal distribution and K-

distribution,
i Although the moments as given by Eq. (5.19) depend upon three
1 parameters, we found that a reduction to one effective paraméter could
‘ .
) be realized by utilizing empirical relations such as
b
[

A= 0.59x + 0.41 (5.21)
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2
5 M2 " 10.2375x° + 1.4625x - 1.875, o __ > 2
I Lnl
1 . :
Lz vhere x = <12>/<I>2. That is, we found the normalized second moment

associated with the specular component varying almost linearly with the

- total intensity second moment whereas a relationship involving the

e B i b A s ot s A . i

. normalized second moment associated with the diffuse component required
a quadratic relation which further depended upon the value of the log-

intensity variance. The parameter m is then galcuiated from (5.22) and

o prne. 4 o e e

the relation

m=1/(u, - 1. (5.23)

T e e s = g o
PR

i. The one remaining parameter r can therefore be expressed as a function

of 2, Hy and x by utilizing (5.20b) from which we deduce the telation

X i . 2-x+ Gy + X - A)x+ 4 - dy (5. 24)

X ~ A

- —
B el &

Using the empirical relations (5.21) and (5.22) along with (5.23)

and (5.24), the variation of the intensity 02 and the variation of the

1
e = o

2
2 . L '
power ratio r as functions of O1nr °F O rop 2T shown in Fig.'s

' 5-4 and 5-5, respectively.

= -~ : >
I T

We should hasten to point out that the empirical relations (5.21)
and (5.22) were not arrived at by applying some regression relation in

the hopes of finding the best fit. Since the actual amount of data

I available at this time is somewhat sparse, we employed visual fits
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based upon the data that we obtained as well as us’.g data that was
earlier published by Parry and Pusey [9]. It 1s likely that some
modification of thesé relations will result when more data is available

so that a better fit of the theoretical curves can be obtained.
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VI. BINARY UNION DECODING

The Binary Union Decoder is a decoding technique used to récognize
block codes which are transmitted through a fading channel. The MILES
system uses such a decoder in order to defeat the fading of a laser
beam signal caused by scintillation (or other scattering mechanisms).

The decoder consists of one storage register that acts like a
memory for a word. The next received word is then OR'ed bit by bit
with the word that preceded it and which was stored in the memory
register: The result is a word which is then decoded. This technique
is designed to make up for the loss of one half of a word sc long as
the same half of the word is not loit in each word transmission.

A conceptual block diagram of the decoder is shown in Fig. 6-1,
illustrating -that each of the bits in the stored word is OR'ed with

its corresponding bit in the current incoming word. The fact that
each bit is used twice, once when it enters the receiver and once after
it hassubsequently been stored in memory, means that the OR'ed words
shown schematically in the right-hand column are not independent of
one another. It is precisely this dependence between the OR'ed words
that was ignored in an earlier .analysis of the decoder and thereby
lead to an overly-optimistic prediction of the MILES System performance
[21].
In this section of the report we present a detailed analysis of
the Binary Unioi Decoder taking into account the dependence between
OR'ed words. We consider MILES block code words with weight W and N+1

répeated word transmissions. Special cases to be considered are the

following:
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Block diagram of Binary Decoder.
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Case I: All btits in each word have equal probability p and' the word

detection probability computed for N = 4 and N = 8. (This case

simulates the situation wherein the statistics of the-propagation
path of the laser beam remains constant during the entire message
transmission.) These results are compared with the current MILES
analysis [21] where independence between OR'ed words was assumed.

Case II: .All bits in the first half of each word have equal probability

e .

p and all bits in the second half of the word have equal probability

fom s

q, where q = 3p/4. (This case models the fading of half a word

length, and since the MILES word is 3.63 milliseconds in duration,

it corresponds to the case of 1.8 milliseconds average fade time.)
ié Case III: All bits in the first half of each word have equal probability,
and this probability is the same as associated with all bits in

. the last half of the preceding word. Thus half the word has

: probability p and the other half has probability q = 3p/4. (This

case simulates a fading of 3.63 milliseconds but only half of

each word would be affected).

Case IV: All bits in the first one-third of each word have equal

- probability p, all bits in the next one-third of each word have

" ' equal probability q, and -all bits in the last one-third of each
word have equal probability r. The relationship between the
probabilities was chosen as q = 3p/4 and r = %p. (This case

simulates a fade length of about 1 millisecond.)
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Finally, we make a, comparison of the Binary Union Decoder with
the Simple Word Recognition Decoder. The Word Recognition Decoder gives
an output signal only after it has recognized the received bit pattern
as a valid word. Again we consider MILES block code words with weight
W and N+l repeated word transmissions. The special cases c¢onsidered here
are ‘the following:
Case V:  All bits in each word have equal probability p.
Case VI: All bits in the first half of the word have equal probabiliﬁ&
p and all bits in the second half have equal probability q, where
q = 3p/4.
Case VII: One-third of the bits of each:code word has probability p,
one-third has probability q and one-third has probability r. We

again assume q = 3p/4 and r = Yp.

A. Case I ~ All Bits Equal Probability:

The bits of a single OR'ed word, which we will calleAi, are repre-
‘sented by the symbol aij where i denotes the bit number and .j denotes

the repeated word number. It then follows that, for example,

%17 2,1Y 22,1
(6.1)

=3
u

U a;

12 - 21,2 320

while in general
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RTIE N

where 1 $ i SNand 1§ j $W. The letter N denotes the number of ‘unions

MRS e e e oo,

and thus N+l is the number of repeated words transmitted, and the letter
Now if

Ly

Sor

W is the weight of the code word (i.e., the number .of "ones").

- only one good word is required for a successful decode (i.e., hit),

SR s frrgann

then mathematically we wish to determine the probability associated with

N unions of the "A's",
N

EA : P(A v AL ... uAN)= P(UA),
i=1

(6.3)

T
038 Dby T vy g P

where each Ai denotes a word of weight W. By considering only the "ones"

and not the "zeros", we are considering. only the: fading loss and not the
1

t]
o } : more general case of noise which could change a "zero" to a "one" as

,
v

well as a “one" to a "zero".
If we first treat the special case of only three repeated words

‘being transmitted, then we will be interested in-.computing

P(Axv Az) = P(Al) + P(Az) - P(Alr\Az). (6.4)

S RS v e d

In terms of the OR'ed bits uij’ the intersection in (6.4) is

P
i A
i' Al" A2 = (dll" L :.. nalw)t\(021ﬂu220 . nuzw), (6.5)
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or by regrouping,

A;n A;2 = gann “21) n (“12" dzz)p G n(amn u~2w), (6.6)
+nd hence
, N ‘i . .
PfAI" A)) le P(dljttdzj). (6.7)

If each bit a, . of the received word has probability p, it follows
?

that the probability of each OR'ed bit “ij is

P(“ij) P(ai,j) + P(aiﬂ’j) - P(ai’j)P(am’j)‘

1- Q- p?, (6.8)
and therefore the entire OR'ed word composed of the OR'ed.bits uij is

pa) =[1- a-p¥¥ = [1- apap]Y 69
for i = 1,2, Also, we now see that

P(or1 = P(“lj) + P(“z'j) - P(alju “zj)

" %)

1]

2 [1'(1-9)2] - (39-3p2+p3)

1 - (1-p)(1-p%) ,
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and hence the union AI"AZ has probability

P(A,v A,) = 2 [1-(1-p) (1-p)] Yoo L-aepa-ph] Y

which can be expressed in the equivalent form
2 m+1 (2 2.4 W
Payvay) = 3D (m) [1-(1-p) (1-p)]

The symbols (2)are binomial coefficients defined by

(;)= — Kk (6.12)
mt(k - m)!

With the above special case serving as a model, we can now gen-
eralize the results to the case when N+1 repeated words are transmitted.
Here we find: the probability of successful decoding one word out -of

N+1 received is
P( Ei ) =8, -8, +8., - + (-1)N+IS (6.13)
AL T T T N .
where the § terms are

N
s; =% e =()-a-p a-p ¥

i=1

N
= =(¥ 2, W
2 —1§=I;(Ai" 4 '(2)[1'(1'P)(1-p )
‘i*jN
) = (™12 (1203 (125311 ¥
S5 4 jgg;g(Ain Aina) = (3)[1 (1-p) (1-p)]
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Eq. (6.15) and the lower curve for each N corresponds to the

present analysis based on Eq. (6.14).
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Hence the probability we seek is given by

' .
P( LJ A ) = ﬁ; )" 1 (g)[l—(l-p)(l-pm)l W‘ (6.14)
iml me
The above approach to the analysis is an accurate accounting of the
Biary Union Decoder. It might be pointed out that if the unioned words,
Ai’ were assumed independent, as is the case in the current MILES

analysis [21], the probability of a successful decode would be

P( u A) =1 -{1 -[1- (1-p)2:|"’}N"1 , (6.15)
i=]
where N+1 is again the number of repeated words and W is the weight of
the word. A comparison of the probabilities generated by Eq.'s (6.14)
and (6.15) is shown in Fig. 6-2. Here we see that the probabilities
resulting from Eq. (6.15) are much higher than corresponding proba-
lities given by Eq. (6.14), which are a direct result of ignoring the

dependence of the unioned words Ai'

B. Case II - Half Word Fade Time

If we assume a, j has probability p for j =1...,W/2 and proba-
, :

bility q for j = W/2 + 1,...,W, then Eq. (6.7) becomes
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P U Ww/2
; P(Aln‘Az) = Tl P(a o a, ) II P(a Jn o ) (6.16)
- =]
’ k g
L
s Using the result (6.10), we find

2,0 a) = [1 - apa-pHIY2 1 - -a-H Y2 6an)

and therefore it follows that

2
P(aua,) = T (-1™ —(ﬁ){[l - (-9 -p™] [t - - -} Y2 (6.18)
m=1

' :

i P
HERE
X ]
b . ¢
ég } Generalizing Eq. (6.18), we have i
g
. : + . ]
¥ ; ( LJ A) Z%} -y (g){[l-(l~p)(1-pm)][1'(1-q)(1-qm)]}w/2 (6.19)
;
i K
v i
- . Eq. (6.19) is plotted in Fig. 6-3 for the special case when the

! .
¥ ! 3 -2l ) )

'+ : bit probabilities satisfy ¢ = 3p/4 and N = 4 or N = 8. Corresponding

T e

curves for the case when all bits have probability p (see Eq. (6.14))

aa are illustrated here for comparison purposes. The relative bit proba+

Narucey
e S o o —— e
+

I bilities chosen were picked only as typical of fading conditions and

also to demonstrate the effect of the Binary Union on the word detection

|

bilities assigned to each bit.

%: probability.
3
4
‘| T |
= rhe C. Case III - Full Word Fade Time - Half Word Lost:
if . G Here we assume P(a, .) =p, j = 1,...,W/2 and P(a, .) = q,
Ff ] 1,j 1,j
, = j=W2+1,...W. Then P(a, .) =q, j =1,...,W/2 and B(a, ) = p,
- - +J 2,j
,; l j =W/2 +1,...,W, and so on where every other word has the same proba-
%
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For three repeated words, we must calculate

where

and likewise

P(AUA,) = P(A) + P(A,) - P(A;nA)),

W/2 W
P(AI) = }l P(ulj) .AE P(dlj),

=]

(p+q- p"2 (q+p - "?

f1 - -9 a-p)] ¥,

PA) = [1- (1-9Q-p) " .

Also, we find that

W/2 W
{l P(otlj n °'2j) lilq
j=1 =t

[2(p+q-pq)-(2p+q-29q-pz+p2§)] W2y

[1- (l-q)(l-pz)] W/2 [1- (l-p)(l-qz)] w2,

6.20) '

(6.21)

(6.22)

2(p+q-pq)-(2q+p=2pg-a>+pad] vz

(6.23)
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N=4 or N =8 (seé Eq. (6.25)).

The dashed curve for each N

corresponds to the probability of detection when each word has
the same p,q probability assignment as the previous word (see

Eq. (6.19)).
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two curves correspond to the special case when all bits have
equal probability p as given by Eq. (6.14)).
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Therefore, Eq. (6.20) now takes the form
2 )

P(A;, Ay) =2(-1)“‘-” (ﬁ)gp-u-q)u-p‘“)l n-a-ga-"i} M3 (6.2
e .

and generalizing to N+1 repeated words yields

N
N \
P(UA,) = -1"“‘1(N “(1-9) (1-p™} p-Q-p) (1-g"y} /2. 6.25
(U A m;( 1) m)l[l( Q) (1-p™} p-(1-p) (1-q"}} (6.25)

Probability of detection curves using Eq. (6.25) for the special
case when q = 3p/4 and N = 4 or N= 8.are shown in Fig. 6-4., The upper
curves for each N illustrate similar probabilities of detection when
each word has the same probabilities p and q zs determined by Eq. (6.19),

rather than every other word as is the case of present interest:

D. Case IV - Third of a Word Faded:

Finally we consider when P(a., ,)=p, j =1,...,W3, P(ai j) = q,
]

1,3

j =W/3+1,...,2W/3, and P(ai j) = ¢ for j = 2W/3+1,...,W. Following the
y

n

same procedure as outlined in Section B, we find that

-

N N
P(UlAi) =Z(-1)"‘“(:){[1-(1~p)(1-p“‘i [1-(1-9) (1-g™) [-C-0) - /3 (6.26)
1= m=1

Probability of detection curves for this case are illustrated in
Fig. 65 for the special case when q = 3p/4 and r = %p. Again these

values represent typical probabilities.

E. Case V - All Bits Equal Probability:

If we let the probability of detection of a single bit be p, the
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o word detection probability for a word of weight W is

1) _ W
3 T Pword =p. (6.27) 1
! ; A
3 ;’ The probability of missing a word is o
f’ L 3
T i
! By=1-p" (6.25) \
g“ * and the probability of missing every one of N+1 repeatedly transmitted
év T words is

' T W\ N+1

Py = (1 -P) 7. 6.30 )

; | gy = (1 B (6.30) )
ﬁg éu F. Case VI - One Half Word Fade:
;f 1 ]: Suppose p is the probability of detécting half of the bits in a

word and q is the probability of detecting the second half of the bits

in the same word. The probability of detecting the word is

o
DS §- N
§1 “q

B ans it “PLE >
N e e b A e, N s o

g
:
: ' L W2 W2
]; Pword - p q ? (6'31)

and hence the probability of detecting one word in N+1 repeated trans-

missions is

By=1- 0 - eoM2 M
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G. Case VII - One-Third of .a Word Faded:

Let the probability of :each ‘third of a word be p, q, and r,

respectively. Following the analysis in Section F, we deduce that the

AL o e B S
Lol RN BNy, VY

’ probability of detecting a single word when N+1 are transmitted is
i
b + )
PD =1~ {1~ (pqr)w 3] N 1 (6.33).
{E
|
g . Fig. 6-6 shows the plots of Eq.'s (6.30), (6.32) and: (6.33) where
¢ b we have chosen q = 3p/4 and r =kp. These choices represent typical
; {u fading depths and rates as discussed earlier. Comparison of the results
?: here for the ‘Word Recognition Decoder and those in previous secticns
51
S i
?, . for the Binary Union Decoder clearly reveals the effectiveness of the
g Binary Union Decoder. Observe, however, that the Binary Union Decoder
£ . .
;e i is :most effective by comparison with the Word Recognition Decvder when
§A : all bits have equal ‘probability.
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I bility, the middle two curves correspond to that case when half

the received word has probability p and half has probability q

3 (Eq. (6.32)), and the lower two curves correspond to that case
i , l when the word probability is split into thirds (Eq. (6.33)).
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VII. DISCUSSION

The purpose of this study wazs to evaluate the potential for using

MILES equipment for long range marksmanship gunnery training. The

current MILES equipment was designed as a tactical engagement laser
weapon fire simulator. In the development of the system detuiled
analysis was performed to. predict the optical communication process.
The Binary Union Decoder was designed to increase the detection proba-
bility of received MILES words under very specific fading conditions.
That analysis was performed assuming short range propagation path and
weak scattering in the path. Also, simplifications were 'made in the
analysis of the MILES decoder circuit which are valid' for the short
range problem but which proved unreliable and misleading for the long
range problem. That is, if the short range (200 meters) ana.ysis is
extended to the longer ranges the probability of detection curves that
result are overly optimistic.
In order to definitively evaluate the MILES potential for long
range marksmanship gunnery training, the following tasks are required:
1. Evaluate currently available mathematical models and alter
or create new models for long range optical propagation.
2. Experimentally evaluate MILES long range detection proba-
bility (kill probability).
3. Develop appropriate and necessary add-ons for MILES
equipment which vwill allow it to accurately simulate long

range gun firing for marksmanship training.

A. Completed Modelling Tasks:

During the current study we have completed the following aspects

of the mathematical modelling:
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Experimentally detérmined, in well documented field
experiments, conducéed at 'NASA's Kennedy Spacé Center,
that the Lognormal Statistical Model for scintillation
scattering is valid oniy,fopAracges léss than 200 meters
(or weak turbulence cénditipns).

Thé field experiments also proved that the variance cf the
statistically fluctuating optical signal at long ranges
does not saturate at the low values ((0.7) used in the MILES
analysis. The actual variance at long ranges may be as
high as 4 or 5.

The K-distribution was validated as a reasonable-model for
long ranges although it is not theoretically applicable
for short ranges when the normalized variance is less than
unity.

The cumulative fading (or cumulative distribution) was
computed for the K-distribution and for the lognormal
distribution using the same variance in both cases (see
Fig. 7-1). The lognormal model predicts lower fading

at long ranges as compared with the K-distribution leading
to a more optimistic view of system performance.

‘A universal statistical model, called the G-distribution,
was developed that would accurately predict scattering
effects at both short range and long range. Due to
complexities of the mathematical functional form of the
G-distribution, only the statistical moments have been

computed with the distribution at this time. Further

analysis and refinement of this distribution is required
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Fig, 7-1. Comparison of cumulative fading model for K-distribution
(solid curves) and lognormal distribution (dashéd curves) as a
function of the ratio of receiver threshold to mean intensity.
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to cast it into-a form that will be propitious to the
computation-of cumulative fading.

In addition to the mathematical modelling of the intensity fluc-
tuations of the optical beam, an analysis was performed on the Binary
Union Decoder employed in the MILES system. Although the current
analysis was reasonably accuracy for short ranges [21], it leads to
a considerably over-optimistic performance of the MILES system for
longer ranges. The analysis performed in this study for the decoder
made use of the lognormal distribution as well as the K~distribution
to illustrate the differences in the predicted performance of MILES

7
at long ranges for both statistical models (see Fig. 7-2).

B. Evaluation of MILES Equipment:

As of the completion of this portion of the study, there has been
no MILES equipment available for testing. If and when the equipment
becomes available, it will be taken to NASA's Space Shuttle Runway for
the purpose of conducting experiments in the hopes of determining

detection (kill) probability zones as a function of range.

C. MILES Equipment Add-On:

The major portion of the marksmanship study concerning MILES
hardware add-ons. was conducted by Code N-73 of NTEC's research divi-
sion. The UCF research team worked with Code N-73 in the early stages
of the study to help develop add-on hardware concepts that would be
MILES compatible and allow MILES to be used in marksmanship gunnery

training. The concepts that evolved from the preliminary discussions

were:
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1. Phase locked loop (PLL) receiver.

2. Digital filter (DF) receiver.

3. Continuous wave (CW) laser, transmitter pulsed at high rate.

Since the MILES transmitters operate at a basic transmission rate
of 3 khz, the high pulse rate CW laser could be configured so as to
transmit 20 pulses during the slot time rfor one MILES bit pulse. The
receivers wouid then lock onto the 20 pulses and output one pulse at
the MILES bit pulse period. Hence the proposed transmitter and
receiver would appear as standard MILES transmitter and receiver to
the preserit MILES encoder and decoder electronic systems. In order to
drive the transmitter and receiver developed by Code N-73 of NTEC,
the UCF research team developed the software so that the microprocessor
system PROMPT 80 could be used as MILES encoder. The MILES decoder
system can be simulated using the MINC-11 computer. Appendix C lists
the microprocessor program for simulating the MILES encoder.

The above techniques were being developed simultaneously and in
conjunction with the UCF study of the mathematical modelling. These
techniques are well known in communication theory and appear to be

very promising as techniques to allow MILES to be used for marksman-

ship gunnery training.
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APPENDIX A

The Characteristic Funccior-

Let us write the time-independent portion of the field as

16 ié

E = Ae  + Re (A-1)

=E +E

1 2°

Since E, and E, are complex functions, we define their characteristic

1 2
functions as two-dimensional Fouriér transforms. For El’ this becomes-

o 29

/ oluAcosd + 1vAsing .\ o 404y (A-2)
o o0

where p(A;0) is the joint denmsity function of A and 0. If we assume
that A and 6 are independent, and further that 6 is uniformly dis-

Cl(u,v) =

tirbuted, then
p(,8) = p(AP(O) = 7 p(A)

and (A-2) can be written in the form

b 27
e (u,v) = f p(A) = / 1Azcos(8 = a) 49 44 (A-3)
o] [¢]
where
z = u2 + v2
and

a = arctan(v/u).

Using the integral formula ([17], p. 350)

27

1. [ ixccsd
. ]e dé = Jo(x) (A~4)
(o]

it becomes clear that C1 depends only upon the radial variable 2z, i.e.,

oo

c,(z) = / P(AJ(Az) dA, (A-5)
[o]




' which we recognize as being equivalent to the Hankel transform of p(A)/A. i
’ Under similar assumptions for R and ¢, the characteristic function for 3
~ ' E, leads to 1
}~
6@ = [ o3 @) @, (a-6)
, [+
' and therefore the characteristic function for E = E, + E, can be expressed g
in the product form i
® © 2
N ] “
i%ﬁ C(z) = Cl(z)CZ(z) = /p(A)Jo(Az)dAv l p(R)JO(Rz)dR. (A-7)
? l (\ (- ,
% The pdf for E is defined as the two-dimensional Fourier transform ‘A:
d of C(z) given by ;
| - - |
] p(E) = -—1-2~ [ /e-mx - Y C(z) du dv, (A-8)
SR 4n \
] j} l -00 a00
i ~ where
£ ;
£ ( l X = Re(E) = Acos® + Rcosé
v and
2 l Y = Im(E) = Asin® + R sin §.
; Since the characteristic function is formulatedin terms of the radial variable
.J vt : z it is convenient to write the exponential function in (A-8) in terms of
. l h l polar coordinates. Thus we write
¢
¥: § uX +vY¥ = |E|lz cos(y ~ a)
2o
SR where
[ l E|] = X% + v
and
; I ¢ = arctan(1/X).
I Converting the double integral in (A-8) to polar coordinates (z,a) it follows
? that
Cod o
2 | - -
SN p® = =k [ f w@etBlz sl =0 44y, (8-9)
S X 4
- o o
p i
L I
: g which in view of (A-4) further reduces to
i
Lo
SRR |
b '
X




Now since

1

" p(E) "-i-};-/ zC(z)Jo(IEIz) dz (A-10)
' (o]
| p(E) = p(IEDP(W) =5 pUED),

we see that

p(IE]) = /zC(z)'Jo(IEIz) dz, (A-11)

11
l o
‘T

and finally, by making the transformation I = IEIZ, we obtain the pdf

Sotiaci
i

for the intensity 1,

? p(I) = / 20(2)3_(fT2) d. (A-12)
(o]

! g
SR
- ! 1
‘ k,
L
s .
§ Jl

- - "
4

-

Ot e R R g e
-

Soa Al
P
Piinnd

~
H - -

Radaid LT R, .
R R e
> B

P “"

j
70 1
i
4

R e pon s
s e e SR S
o 0 . LN iy
. - S - »
i A TR CENRC™ -
- Lo 3t ok s otk S R P K o L
i A ATt




fo 3

. ;

. APPENDIX B

- The Meijer G-Function 't

s ' ;

% - In Section VA we developed the expression A

e : T o0k ) 21fm| b1 !

o p(D) = 2 2 I 023 'y ) (B-1) :

! k=0 (k!)“T'(m) ktl, m, k+l ¢

i as the pdf associated with the intensity fluctuations of an optical beam Q

. propagating through clear-air turbulence. By Ggé(.), we mean one member of v

§ ol the generalized function known as the Meijer G-function [19]. It is our ?

% Z intent here to relate this function to more standard functions used in }
B Lo M
» : engineering applications. In particular, we will show that Gi%(.) is %
E related to the generalized Laguerre functions. g
g | Using the relations ([19], vol. 1, p. 209 and p. 216) ;
% a, a a %
l 2 Vi
§ A EE-C N
gr] b’ C, [ - b, (M ‘)‘1‘
i 1
é ;
: , and i
SR 20 (| 2\ Ja(bre-1) i :
- Con = - ;
1 2\, ) ® 7 Wybrerl)-a, t(bc) ) ®-=3 |
: P ’ 3

n , i

' uy i
1, ! i we can relate a particular Gig(.) function to the Whittaker functions %
‘ W, o). Then employing the relation ([191. vol, 2, p. 432) i

] 3

3 ] 3
: | : = (=1)" uHs  (2u), | %2 E/
s‘. " wu"'n"'!i, ¥y (x) (-1) " nl x Ln (x)e ’ (B-4) ;
. i () “3
% i where Lna (.) 1is the generalized Laguerre function, we have one special 4
;i case of interest "f
3 21 ® 2 - -x . (c- 3
i I 6o (= = (D" b - a)ta® e oW (), (B-5) 1
by, ¢, @ .
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The G-function in (B-1) is more general than that in. (B-5). There-
fore in order to utilize (B~5) we need to develop an appropriate recurrence-
type formula which relates the more general G-function to those of the specific
form in (B-5). Such a recurrence formula can be derived by making use of the

relation
n; 1 ntl, 1 o, 1
21 21 21
Gy3 | = (kH3-n)Gyq | x Go3 |
k+i, m, k+l k+§, m, k+l

which is-a:-special case of Eq. (11), p. 209, vol. 1, [19].
Jj=1 and n =1, repeated application of (B-6) yields

" af ) ¥t 2
€3] x szs - Gy X
k1, m, k+1 K+, m, k1

3, 1 |
)- 2kc§’§ x
K, m, kel

21(
+ Goolx
\

k+j+1,m,k+1

Starting with

2, 1 )
k4+2,m,k+1

3, 1
k+2,m,k+1>

- k(k-l)cg (

3,1 )
’
k+3,m,k+l

whileé in général it can be shown that
k
i 1,1 k+l, 1
2 v 1 -4 2 ’
z; ) = ) (-1)% (‘j‘) 3! czi(l ) . (B-7)
=0 2k~+1,m,k+1

k+l, m, ktl
Recalling (B~5), this last result leads to

21
23

and the substitution of this expression with x = mI/b into (B-1) gives us

2
1, 1 . k(k _ -
>’= % x5 (3) PP D e, @-8)
k+l, m, k+l 34=0

S m-1 -mI/b): Z k=1) 1 425 (R pme2kt) (5-9)
r (m)b™ k=0 4=0 1 [(k-§)!11° “2ic-4

72

!
Bt K3 B
.

N NG At .
e el e Mo el 5 S Bt



F O 1

It may be of interest to consider here the separate case when
m=1 since (B-9) reduces to a result previously obtained through

o <
o NN,

othér means. From the relation ([18], p. 1038)

B SV

Lx(;n) (x) = (-D" x*/nt,,

we find

(2k=1)! (2k+j) als) = kl)f -l)j(I/b) -3 ’
j-O 31 T(k=3) 112 420 §10(k-§)17°

W AN

and by setting k - j = n,

¥kl (2kH) __L_ am® !

7 Loy ) (/) = 2 <1)( o~ !

j=0 j![(k -3)1] b k! n=0 g

H

——l— L, (1/b),

b* k1 3

e

where Lk(') is the kth Laguerre polynomial. Thus, by setting m =1 2
1%

in (B-9) and using the above relation, we see that (B-9) reduces to

Lo

® k 2k
1 -I/by (-1
p(I) = e / kzo L;)fflﬁ—i L (1/b) (3-10) ;

which is in agreement with Eq. (19) in (8] for I = E2 and b = 2q§.

That is to say, (B-10) is the pdf that would result under the assumption
that the diffuse component(s) have an amplitude R that is Rayleigh
distributed rather than the more general m-distribution as assumed for

NN e s

e N

our model leading to (B-9).
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APPENDIX C
Mircoprocessor Simulator

and High Data Rate Receiver

C.1 Transmitter and Encoder:

In order to conduct experiments on the high data concepts for
MILES add-on's it is required that the MILES encoder-transmitter be
simulated. The encoder tramsmitter design required that the system
be as flexiblé as possible. This design had to allow for a variety
of experiments on different types of modulation and block. coding
schemes, Because of the diversity of digital block codes, it was
decided that a general purpose microprocessor computer should be used
to generate these .codes. The different proposed concepts also required
that the transmitter be able to transmit block codes either by Frequency
Shift Keying (FSK) or by On-Off Keying (00K) modulation formats.

The use of a computer for genérating block codes requires the

computér to interface with a teletype and to have an I/0 port that is

easily accessible, The computer used for this task was the Prompt

80, an Intel 8080 (CPU) computer, which is capable of driving the
necessary teletype and has an easily accessible 1/0 port. The Prompt 80
is limited to 1K of R.A.M. memory, but because it .doesn't have an on-~board
assembler, programs must be hand-assembled and keyed in by hand via the
front panel keyboard.

The code generation program had to produce block codes that were
MILES compatible. The MILES block codes consist of 32 different 11-bit
words. These words are sent at a bit rate of 333 p sec per bit. Each

word is then repeated and re-transmitted a specified number of times.

For the Dragon missle, the Tow missle and the Viper, a special subroutine
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was needed. To reduce the number of program subroutines required,
the number of repeats of the word transmission was entered via the k;

teletype. A Print subroutine, an ASC1l binary-to-binary subroutine, 5

an ASC11 decimal-to-binary subroutine, and an:output subroutine were

ETRE Y

the major subroutines written. The Print subroutine printed the messages

on the teletype. The ASGl1 binary-to-binary subroutine and the ASC11

decimal-to-binary subroutine were two required conversion routines. The
ASC11 binary-to-binary subroutine was used to enter the 11-bit code word
while the ASC11 decimal-to-binary subroutine was used to enter the number

of times the code woﬁid be repeated. The maximum repetion of the code

r—

P e W\me R ARG~ o P
-
-

b was set at 99, The output subroutine serially clocked the 11-bit code

e
B Fonie oo s TR _
. . \d by &l e L 22 i i -
FSRCCR . e RS S o 4300 Vs abomir g
v i
1 w0

.
o

words. bit by bit at a rate of 333 p sec per bit. The program listing

R Sk

is given in Table C-1.

The output of the computer was used to control the modulator

e e s e ey v

which in turn was used for the two different modulating formats (FSK

ih and 00K). The circuit developed allowed for both methods to be utilized

with a minimum number of components (see Fig. C-~1), and switches from

o

T AN e Wish e T AT e
-3
~

ind

FSK to OOK by the throw of a switch. The modulator circuit performs

in the following way. The flip-flop and nand gates 1 and 2 are used

SRR A e

to divide the input carrier's frequency by two. These three logic

devices allow the carrier's frequency to be divided by two and yet be

independent of the carrier's pulse width (minimum of 60 nsec pulse
width). With the switch closed, there is no output from nand gate

2 and hence its output remains low (OV). The computer code controls

IR A M TS W O A NS e ¢

which carrier signal is allowed at the output of nand gate 6; this is
accomplished with nand gates 3 and 5. If the computer output is low

(oV), a high (+5V) appears at the input to nand gate 3 and a low (OV)

15
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appears at the input to nand gate 5. A high (+5V) at the input to
nand gate 3 allows the carrier (with frequency-divided by two) to
bF:pfesent at ‘the output. If the -computer code is high (+5V),

the input to nand gate 3 is low (GV) and the input to nand gate 5

is high (+5V). Again this permits: the carrier (with frequency divided
by one) to be present at the output. The result is FSK modulation.

If the switch is closed, the circuit operates as described above
except when {he co.puter code is low (OV). With the switch, closed
there is no output from the modulator when the computer output is

low (OV) which ‘esults in OOK modulation. The output of the-modulator
is then fed to the driver circuitry which drives the laser diode. The
laser is then pulsed at the carrier frequency or carrier frequency
divided by two dcpending upon the state of the computer output and the

modulator switch position.
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TABLE C-1 3

. MICROPROCESSOR 8080 PROGRAM FOR' CONTROLLINC ’
T TRANSMITTER TO. TRANSMIT MILES CODE : 3
| ] ADDRESS ASSEMBLY OP_CODE. 4
i 1 3D00 Start IXI SP, #3CFO 31F03C 1
: ~ 3D03 LXI HL, {MES1 21DO3E 3
; I 3D06 CALL OUT CO003E *’*j
P 309 MVI D, #9 1609
i ;L 3D08 MVL B, #0 0600 ;
o 3DOD Start 1: DCR D 15 :
g th 3DOE . JZ Start 2 CA773D. k
T 11 CALL 1BC2 CD2B3E 5
H 3D14 JMP Start 1 C30D3D

; :§ ;. 3D17 Start 2: MOV E,B 58

Ly 1D18 MVI B, #0 0600

2 ™ 3D1A. MVI D, #4 1604

: *‘ ! l 3D1C Start 3: DCR D 15

{ > “ 3D1D JZ Start 4 CA263D

: g l, 3D20 CALL 1BC2 CD2B3E

' § , 3p23 JMP Start 3 C31C3D

1 § l 3D26 Start 4: LXI HL, #Temp 1 21F13C
§ ‘\ 3D29 MOV M,E 73
5 3D2A INX H,L 23
3D2B MOV M,B 70

3D2C Start 5: LXI HL, {MES2 21033F .

TN 2R
P

Ve e i S
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l 3D2F CALL OUT CDOO3E
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ADDRESS

3D32

3D34

3D37
3D3A
3D3B
3D3E
3D41
3D44
3D46
3D49
3D4C
3D4F
D52
3D55
3E00
3E01
3E03
3E04
3E05
3E08
3E09
3E0C
3ECT
3E10
3E13

Start 6:

OUT:

IN:

79

ASSENBLY
MV E, 00
CAXL DECB
LXI #Temp 3
MOV M,E
LXI HL, MES3
CALL OUT
CALL IN
CPI #53
JNZ Start 6
-CALL SHIFT
CALL OUT'1
LXT HL, {MES4
CALL. OUT
JMP Start
MOV A,M
CPI #00
RZ
MOV C,A
CALL O7FA
INX HL
JMP OUT
CALL 0729
MOV C,A
CALL O7FA

ANI #7F

0P CODE
1E00
CD333E
21F33C
73
21313F
CDOO3E
CDOC3E
FES3
C2003D
CD7D3E
CD593E
21543F
CDOO3E
€3003D
7E
FE00
c8
4F
CDFA07
23
C3003E
€D2907
4F
CDFA07

E67F
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ADDRESS

3E15
3E16- 1BC;
3E19
3E1B
3E1E
3E20
3E23
3E25
3E28
3E2A
3E2B IBC2:
3E2E
3E2F
3E30
3E31
3E32
3E33 DECB:
3E35
3E36
3E39 LOOP:
3E3¢
3E3E
3E41
3E43
3E46

80

A§SE“BLY
RET
CALL IN
CPI #4D
Jz {MISS
cPI #32
JNC #iStart
CPI #30
JC {iStart
ANI i1
‘RET
CALL IBC
RAR
MOV A,B
RAL
MOV B,A
RET
MVI D, #2
PUSH DE
IX1, 0,0
CALL IN
CPI #3A
JNC Start 5
CPI #30
JC Start 5

ANI #OF

OP. CODE
C9.
CDOC3E
FE49
-CA003D.
FE32
02003D
FE30
DA003D
E601
c9
CD163E
IF
78
17
47
€9
1602 -
D5
110000"
CDOC3E
FE3A
D22€3D
FE30
DA2C3D
E60F
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ADDRESS ASSEMBLY OP_CODE
3E48 ADDE 83
3E49 NOV E,A SF
3E4A POP''B,C c1
3E48 DCR B 05
JE4C RZ cs
3E4D. PUSH B €5
g L 3E4E XCHG EB
1 L 3E4F DAD H,L 29
%: Lo 3E50 PUSH H,L ES
?“} % “:" 3E51 DAD ,L 29
SN 3E52 DAD H,L 29
;L‘ ] - .
_ 3E53 POP B,C c1
¥ . 3E54 DAD B,C 09
&\ S 3ESS. XCHG EB ;
1 - 3ES6 JHP LOOP C3393E )
T 3E59 OUT 1: X1 HL, Temp 1 21F33C
3ESC "MOV C,M GE g
i 3ESD LHLD Temp 1 2AF13C
. 3E60 XCHG EB N
L 3E61 OUT 2: MOV H,E 63
; ﬂ 3E62 MOV L,D 6A
] IE63 MVI B, #B 060B
r ﬂ 19 3E65 MOV A,H 7C
? ! - 3E66 ANT #80 E680
: f L 3E68 RAL 17
I
(o
IS ;
i1

[
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ADDRESS
3E69
3E6A
3E6C
3E6D
3E70
3E72.
2E73
3E76
3E78
3E79
3E7C
3E7D
3E80
3E81
3E82
3E83
3E84
3E85
3E86
3E87
3E89
3E8A
3E8D
3E83
3E8F
3E91

SHIFT:

DELAY:
DELAY 1:

82

ASSEMBLY
RAL

OUT E8
DAD H,L
CALL. DELAY
MVI A,00.
DCR B

JNZ ‘OUT 3
OUT E8
DCR C

JINZ OUT 2
RET

LX1 HL, Temp-2

MOV A,M
RAR

RAR

RAR

RAF:

MOV M,A
RET

MVI A, #26
DCR A

JNZ DELAY
INC A

INC A

MVI A, {14

RET

17
D3ES
29
CD873E
3E00
05
C2653E
D3E8
oD
C2613E
c9
21F23C
7E

1F

1F

1F

1F

77

C9

3E14

3D

C2893E

3C

3C

3E14

c9
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D i iics -
1 II E
‘ ADDRESS ASSEMBLY OP CODE
' I 3EDO Message 1: JCR LF Enter 11 Bit Character
Code or M For Missiles? CR LF/ :
: lp 3F03 Message 2: /CR LF Enter The Number of Times
R | To. Repeat Code? CR LF/
i F 3F31 Message 3: /CR LF Press S To Start Trans- :
I¥ mission. CR LF/ ;
: 3FS4 Message 4: JCR LF Code Has Been Transmitted.
| l CR LF/
% = 3
! TABLE C-2 3
{ r . SYMBOL TABLE ;
I MES 1 = 3EDO TEMP 1 =  3CF1
i MES 2 = 3F03 TEMP 2 = 3CF2 : o
s g MES 3 = 3F31 TEMP 3 = 3CF3 :
: 1 MES 4 = 3FS4 SHIFT = 3E7D
. START = 3D00 IBC = 3E16
. START 1 =  3DOD IBC 2 =  3E2B :
o T START 2 =  4D17 DECB = 3E33 4
Z ! i Ll START 3 = 3D1C LoOP = 3E39 ¢
S START 4 =  3D26 ouT 1 = 3E59 5
Y l START 5 =  3D2C | oUT 2 =  3E61 |
S START 6 =  3D3B OUT 3 =  3E65 :
A ouT = 3E00 DELAY = 3E87 ;
2 bl o DELAY 1 =  3E88 A
< g ll‘ NOTE 1: 0729 is the .address. for the Prompt 80's input subroutine.
- §‘ s (input one ASCII character) .
Kt i

NOTE 2: O7FA is the address for the Prompt -80's output subroutine.
(output one ASCII character)

Swad

T A M D TS AN A IR WL AU v x
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e

il in=u BN

83
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; ; e Fig. C-2. Circuit connections for PLL chip. -
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Fig. C-3. Output waveforms when PLL is locked onto signal and when it
is free-running.
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In order to check the computer program the Tektronix 7704 Digital
Processing Oscilloscope and the Hewlett Packard 5333A frequency counter
were used. To verify the program a code word of 10000000000 was entered
and: repeated ‘indefinitely, which corresponded to a frequency of 273 Hz.
The first bit was high for 332 4 sec leading to a corresponding word
frequency of 271.1 Hz. This meant there was an error of 0.6% between

the MILES and Prompt 80 code generators.

C.2 Receivers:

A. Phase Locked Loop (PPL):

A phase locked loop is an electronic feedback serve loop con-
sisting of a phase detector, a low pass filter and a voltage controlled
oscillator. The controlled phase of the oscillator makes this system
capable of tracking and locking onto a..received periodic signal. Even
though the signal-to-noise ratio is very small, and thus almost lost in
noise, the phase locked lcop can lock-in on only a few cycles. Laboratory
experiments with the ‘565 PLL chip is still one of the most versatile in
many applications even though it is several years old. It has a bandwidth
of 500 KHz, a center frequency stability of 1200 PPM/°C and a negligible
frequency shift with drift of the supply voltage. A circuit diagram for
the PLL chip used is shown in Fig. C-2. In the absence of signal, the
VCO is free running since its frequency is determined by external compon-
ents. Fig. C-3 shows the output of the PLL when the circuit is locked
onto the received signal and also when there is no signal present. A
filter follows the PLL in order to eliminate the free running PLL oscil-
lator signal. The particular filter used in the laboratory experiments
is shown in Fig. C-4. This blocking filter is followed by a comparator

s0 as. to return to an appropriate digital form of the signal. An active
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Fig. C-4, TFilter used on output of PLL to allow modulated MILES signal

! ad to pass and block the free-running signal under the non-locked
P condition.
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i l! Fig. C-5. Active filter used in receiver to detect presence of high-
i pulse-rate modulated MILES codes.
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filter could be used in place of the three stage passive filter shown

in Fig. C-4.

B. Active Filter:

The Active Filter (AF) used for laboratory comparison with the
PLL is shown in Fig. C-5. The gain of the op~amps was 10 and the Q
‘was 10, The laboratory experiments made clear that a PLL is preferred
to the AF for the following reasons:

1. The PLL reached lock-in in fewer pulses than the AF.

2. The: PLL performed over a greater range of pulse rate drifting:
than did the AF.
Even with high performance op-amps in the AF, laboratory results

suggested that the PLL performs more effectively.
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